Hawkeye® 938

Split-Core Current Switch, Adjustable Output, with Command Relay

Installer’s Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor Power</td>
<td>Induced from monitored conductor</td>
</tr>
<tr>
<td>Insulation Class</td>
<td>600VAC RMS</td>
</tr>
<tr>
<td>Frequency Range</td>
<td>50/60Hz</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>-15°C to 60°C (5°F to 140°F)</td>
</tr>
<tr>
<td>Humidity Range</td>
<td>10%-90% RH, non-condensing</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>10% Typical</td>
</tr>
<tr>
<td>Terminal Block Maximum Wire Size</td>
<td>14 AWG</td>
</tr>
<tr>
<td>Terminal Block Torque (nominal)</td>
<td>4 in-lbs (0.45 N·m)</td>
</tr>
<tr>
<td>Agency Approvals</td>
<td>UL 508 open device listing</td>
</tr>
</tbody>
</table>

Do not use the LED status indicators as evidence of applied voltage.

QUICK INSTALL

1. Disconnect and lock out power to the conductor to be monitored.
2. Plan the installation:
 - Locate a mounting surface for the removable mounting bracket that will allow the monitored conductor to pass through the iris, or “window” when it is installed and keep the product at least 1/2” (13mm) from any uninsulated conductors (CE).
 - Determine cable routing for the controller connection, allowing wiring to reach the mounting location.
3. Install mounting bracket
 - Drill holes to mount the bracket to the chosen surface using the included screws.
4. Wire the output connections between the sensor and the controller.
5. Snap the sensor over the wire to be monitored and clip the assembly to the mounting bracket.
6. Close up and power up.

NOTICE

- This product is not intended for life or safety applications.
- Do not install this product in hazardous or classified locations.
- The installer is responsible for conformance to all applicable codes.
- Mount this product inside a suitable fire and electrical enclosure.
OPERATION

The H938 is a current-sensitive switching device with integral command relay that monitors current (amperage) in the conductor passing through it. A change in amperage in the monitored conductor that crosses the switch (setpoint) threshold plus the hysteresis value will cause the resistance of the status output to change state, similar to the action of a mechanical switch. This status information can be fed back to a building controller that interprets the signal and separately switches the relay. The status output can also be used to switch the relay directly.

In this model, the setpoint is adjustable through the action of a twenty (20) turn potentiometer (see the CALIBRATION section). The status output is suitable for connection to building controllers or other appropriate data acquisition equipment operating at up to 30 volts. The H938 relay requires a 24VAC/VDC external power supply for operation.

The H938 housing offers unprecedented mounting flexibility. The mounting bracket can be attached in three different places. Additionally, the bracket is compatible with the Veris AH01 DIN Rail clip, allowing DIN mounting.

NOTES

For load currents greater than sensor maximum rating:
Use a 5 Amp (H68xx series) Current Transformer (CT) as shown.

For load currents less than sensor minimum rating:
Wrap the monitored conductor through the center hole and around the sensor body to produce multiple turns through the “window.” This increases the current measured by the transducer.

Controller must be programmed to account for the extra turns, e.g., if four turns pass through the sensor (as shown) the normal controller reading must be divided by 4.

DANGER: 5A CTs can present hazardous voltages.
Install CTs in accordance with manufacturer’s instructions. Terminate the CT secondary before applying current.

CALIBRATION

Before beginning calibration, establish normal load conditions.

Then choose either A or B below.

A. To monitor under-current (belt loss, coupling shear, status)

1. Turn setpoint screw clockwise until Status OPEN LED turns ON.
2. Slowly turn the screw counter-clockwise until the Status CLOSED LED just turns ON.
3. Turn the screw an additional 1/4 turn counter-clockwise for operational margin.

B. To monitor over-current (mechanical problems, seized impeller)

1. Turn setpoint screw counter-clockwise until Status CLOSED LED turns ON.
2. Slowly turn the setpoint screw clockwise until the Status OPEN LED just turns ON.
3. Turn the setpoint screw an additional 1/4 turn clockwise for operational margin.

TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Reading at Controller</td>
<td>• Check sensor calibration (see above)</td>
</tr>
<tr>
<td></td>
<td>• Check for control voltage at sensor (<30V)</td>
</tr>
<tr>
<td></td>
<td>• Check for amperage in monitored conductor (>2.5A)</td>
</tr>
<tr>
<td></td>
<td>• Assure that sensor core mating surfaces are clean and that the core clamp is completely closed</td>
</tr>
<tr>
<td>Setpoint screw has no stops</td>
<td>The setpoint screw has a slip-clutch at both ends of its travel to avoid damage. Twenty turns CCW will reset the sensor to be most sensitive. Repeat calibration above.</td>
</tr>
<tr>
<td>Both LEDs are lit</td>
<td>Setpoint screw is too far clockwise. See solution above.</td>
</tr>
</tbody>
</table>

For load currents less than sensor minimum rating:
Wrap the monitored conductor through the center hole and around the sensor body to produce multiple turns through the “window.” This increases the current measured by the transducer.

DANGER: 5A CTs can present hazardous voltages.
Install CTs in accordance with manufacturer’s instructions. Terminate the CT secondary before applying current.

RISK OF EQUIPMENT DAMAGE

- Derate the product’s maximum current for the number of turns through the sensing window using the following formula.

 Rated Max. Amps × Number of Turns = Max. monitored Amps

 e.g.: 100A ÷ 4 Turns = 25 Amps max. in monitored conductor

- Failure to follow these instructions can result in overheating and permanent equipment damage.